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The vortex heat exchange in turbulent flows around a spherical hole and a transverse trench, identical in
depth and in the shape of the middle cross section, on a plane wall has been numerically investigated using
multiblock computational technologies. A factorized, implicit multiblock algorithm and a Menter’s model of
shear-stress transfer were tested in the process of comparative analysis of calculation and experimental data
on flows around isolated holes.

The problem of intensification of heat exchange in flows around holes is of considerable interest for special-
ists in thermal physics. In recent years, the geography of investigations on this problem has widened sharply. At pre-
sent, practically all countries of the world are involved in them. The interest shown in the method of vortex
intensification of heat exchange in flows is evidently explained by the fact that this method makes it possible to in-
crease the heat transfer from a wall at low hydraulic losses. However, this process has been predominantly investigated
by experimental methods that give no way of obtaining an integral idea of its physical mechanisms. Such an idea can
be obtained using numerical-simulation methods, which have been rapidly developing in recent years.

The present work continues a series of investigations [1–10] devoted to numerical simulation of the convective
heat exchange in turbulent flows of an incompressible fluid around isolated holes and an ensemble of holes of various
depth and shape on a plane with account for the blocking of the flow by the walls of a narrow channel. In this case,
prominence is given to the interrelation between the restructuring of self-organizing vortex structures and the intensifi-
cation of heat exchange in the neighborhood of holes.

Considerable recent advances have been made in the numerical study of the jet-vortex structures responsible
for the vortex intensification of heat exchange in three-dimensional separation flows around holes. An analysis of the
evolution of a vortex flow around an isolated spherical hole, included in a narrow channel, on a wall with increase in
the depth of the hole has shown that the two-vortex flow in the shallow hole is spasmodically transformed into a sin-
gle-vortex structure with diagonal transfer of fluid in a deep hole. This transformation is accompanied by a jump-like
increase in the heat transfer from both the hole itself and the wake downstream of it. It has been established that such
transformation of the near-wall flow and the heat-exchange can also take place in shallow holes if they are asymmet-
ric. One of the technologically simplest holes is a hole representing two hemispheres connected by a cylinder. Such an
elongated hole can be arbitrarily oriented relative to an incoming flow. It was positioned at an angle of 45o to an in-
coming flow in calculations and experiments. An analysis of flows around spherical and conical holes has shown that
the heat transfer in them increases as a result of intensification more rapidly than the hydraulic losses. It has been es-
tablished that three-dimensional vortex flows in such holes are synchronized, which allows the important conclusion
that, in them, there arises an ordered near-wall vortex layer determining the high heat-exchange characteristics of the
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curvilinear surface of the indicated holes around which the stream flows. However, a limited number of holes were
investigated in the earlier works, and these investigations were not systematic in character. As a matter of fact, there
are still many outstanding questions in the problem considered. We have attempted to answer to some of them in the
present paper.

First and foremost, it is interesting to compare the behavior of two-dimensional and three-dimensional turbu-
lent vortex flows around holes identical in shape but different in depth on a smooth surface and the heat exchange in
them. Our main concern was with the gradient zone downstream of a trench or a hole, in which a three-dimensional
flow provides a high level of heat transfer. Note that the behavior of a turbulent flow and the heat exchange in the
neighborhood of a trench with an envelope in the form of a circular arc with rounded edges at the site of connection
with a plane wall has been analyzed in detail in [11].

Methodology of Numerical Simulation of Turbulent Heat Exchange. The vortex flow and heat exchange in
the neighborhood of curvilinear reliefs were calculated using Reynolds equations [12] closed in accordance with the
model of shear-stress transfer [13] and energy equations by the implicit finite-volume method on a set of partially in-
tersecting, different-scale, structured block grids of simple topology. The multiblock approach allows one to correctly
represent characteristic, different-scale physical elements on a corresponding grid. The initial equations written in incre-
ments of dependent variables were solved in computational cells in accordance with the concept of splitting by physi-
cal processes, and the velocity and pressure fields were determined using the SIMPLEC algorithm. The parameters in
the connected cells positioned at the points of intersection of grids and in the near-boundary regions were calculated
using linear interpolation. The multiblock algorithm realized in a special VP2/3 program package (velocity–pressure,
two-dimensional and three-dimensional versions) was verified in the process of solving a number of two-dimensional
and three-dimensional problems having experiential analogs.

Multiblock computational technologies used for solving three-dimensional problems of vortex hydromechanics
and thermal physics have been systematically developed over the last five years. Of the available works on compara-
tive analysis of experimental and calculation data on the flows investigated, we considered publications devoted to
simulation of a low-velocity air flow in a rectangular channel with a circular vortex cell [14], an asymmetric separa-
tion flow around a cylinder with a disk positioned before its face [15], and the vortex dynamics and convective heat
exchange in laminar [16] and turbulent flows around a spherical hole on a plane [5, 6], a channel [17], and a set of
spherical holes in a plane-parallel narrow channel [7]. In [18], the calculation data on the temperature regime in a rail-
road tunnel of an underground railway, realized in the case of fire in a train carriage, were compared with the analo-
gous measurement data obtained at the All-Union Scientific-Research Institute of Fire Protection. These works allow
the conclusion that, by and large, the multiblock strategy is acceptable for solving complex engineering problems on
personal computers with very small computational resources.

Formulation of the Problem. Three-dimensional and plane turbulent flows of an incompressible viscous fluid
and the convective heat exchange in the region near a plane wall with a spherical hole or a circular trench with a
middle cross section in the form of a circle were calculated. The diameter of the hole (the width of the trench) d, rep-
resenting the distance between the points of its connection with the plane wall, was taken as the characteristic linear
size of the problem (Fig. 1a). The determining linear sizes — the depth of the hole (trench) ∆, the radius of the
rounding of the sharp-pointed edge r, the initial thickness of the boundary layer δ, and the sizes of the computational
region — were determined in fractions of d. The velocity of an incompressible viscous fluid flowing uniformly at a
distance from the wall U was taken as the scale of de-dimension of the parameters. The Reynolds number determined
by U and d in the process of parametric investigation of the effect of ∆ was equal to 4⋅104, which corresponds to the
experimental value of Re determined in [19]. The Prandtl number for air was taken to be 0.7, and the turbulent
Prandtl number was taken to be 0.9.

The computational region ABCD (Fig. 1b) includes a part of the wall with trench AD, around which the
stream flows, on which the adhesion conditions are set. The temperature of the heated wall is maintained constant and
equal to 377 K. The parameters are fixed at the input boundary AB. The velocity profile is equal to 1/7 at the initial
thickness of the boundary layer δ. The flow above this layer is uniform, i.e., u = 1. The energy of turbulent pulsations
in this region comprises 1.5% of the turbulence energy of typical wind tunnels. The scale of turbulence is of the order
of the trench width (hole diameter). The parameters of turbulence in the boundary layer were determined using the tra-
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ditional Prandtl model of mixing. The temperature of the isothermal incoming flow was maintained at the "room" level
and was equal to 293 K. This temperature was taken as the characteristic temperature.

"Soft" boundary conditions (the conditions of continuation of solution) were set at output boundaries BC and
CD. The flow boundaries were positioned at a fairly large distance from the hole (trench); the distance from them was
determined on the assumption that the parameters of the flow in the neighborhood of the concavity have a small in-
fluence on the characteristics of the flow near the indicated boundaries.

The sizes of the computational module in the horizontal and vertical directions were equal to 17 and 5.175
respectively. The vertical size of the near-wall subregion, in which the turbulent boundary layer of initial thickness
0.05 was calculated, was 0.175. The distance from the trench to the input boundary was taken to be equal to six.

The multiblock grid (Fig. 1b–d) used for calculating, e.g., a flow around a trench of depth 0.22, consisted of
three grids different in scale and structure. The first of them (Fig. 1b) is a Cartesian grid with nonuniform pitches in
the longitudinal and transverse directions and a bunching to the wall and the neighborhood of the trench; it contains
129 × 48 cells and covers the whole computational region. The second grid (Fig. 1c) was constructed for repre-
sentation of the near wake downstream of the trench; it represents a near-wall Cartesian grid consisting of 68 × 33
cells and covers the trench neighborhood of size 4 × 0.175. The third grid, representing a curvilinear grid similar to
an orthogonal grid, was calculated in the process of solving elliptic equations; it is consistent with the trench surface,
contains 133 × 54 cells, and covers the trench zone of size 1.8 × 0.175. The near-wall pitch was 0.0005 in the para-
metric calculations; however, it was varied in the range 10−4–5⋅10−4 in the process of testing.

The three-dimensional problem on a flow around a spherical hole of diameter d and depth ∆ (in fractions of
d) is similar in formulation to the corresponding two-dimensional problem [11]. The only addition is the boundary
conditions for the transverse velocity component w. Soft boundary conditions are set at the side boundaries of the
computation region of size 16 × 5.175 × 12.77 (in the case where the distance from the region with a hole to the
input boundary is equal to six).

For the purpose of comparison of the calculation data obtained with experimental data [19], we considered
flows around three shallow holes (of depth D0.06) close in configuration and one deep hole (of depth D0.22) at one
and the same Reynolds number, equal to 4⋅104.

For the first shallow hole (∆ = 0.06, r = 0.1, δ = 0.05), the problem was solved on the assumption that the
flow is symmetric relative to the geometric plane of symmetry that passes through the center of the hole and is par-
allel to the velocity at the input to the region (Fig. 2a and b). In this case, the fluid motion and the heat exchange in
the neighborhood of the hole were determined in a semispace, i.e., with a double economy of the computational re-
sources, which is very important for an ensemble of holes. Of course, this assumption should be substantiated. How-
ever, preliminary numerical investigations of flows around holes, carried out as early as the middle 1990s within the
framework of the simplified approach to the simulation of flows on a multiblock Cartesian grid with the use of a two-
parameter dissipation model of turbulence [1, 2], demonstrated the acceptability of using the symmetry plane for cal-

Fig. 1. Diagram of a trench (hole) on a plane wall with designations (a) and
multiblock computational grids: b) external Cartesian grid, c) internal Cartesian
grid, and d) trench grid.
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culating flows around shallow holes. The multiblock computational grid used in the first case includes an external rec-
tangular grid containing 68 × 46 × 28 cells and an internal grid containing 140 × 69 × 49 cells bunching near the
hole and in the wake downstream of it; constructed in the subregion of height 0.15, width 1.75, and length (along x)
4.5 with an origin at the point with coordinates x = −1.5, y = z = 0. The minimum pitches along the horizontal and
vertical coordinates of the internal grid were equal to 0.02, and the near-wall pitch was equal to 10−4. The velocity
components were calculated with an accuracy of 10−5.

In the second computational variant (∆ = 0.0625, r = 0.1, δ = 0.05), the hole was considered as a part of a
relief without introduction of the simplified assumption on the flow symmetry (Fig. 2c and d). The dimensions of the
computational region were such as in the first case. The multiblock computational grid also included two grids: an ex-
ternal Cartesian grid containing 68 × 38 × 55 cells and an internal grid with 157 × 32 × 171 cells. The minimum
pitch of the grid along the coordinates x and y in the region of the hole was equal to 0.01, and the near-wall pitch
was 5⋅10−4.

The flow around the third hole (∆ = 0.062, r = 0.21, δ = 0.042) was calculated on four intersecting grids
(Fig. 2e, f, and g): an external Cartesian grid (51 × 43 × 33 cells), an internal grid surrounding the hole and the wake

Fig. 2. Multiblock grids used in methodical calculations of three shallow holes
of depth 0.06 (a, b — semispace with a central symmetry plane), 0.0625 (c,
d), and 0.062 (e, f, g): a, c, f) time grids covering the holes; b, d, g) external
Cartesian grids for digitization of the computational region; e) cylindrical grid
with a rectangular axial patch surrounding the hole.
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subregion (51 × 36 × 51 cells), a cylindrical grid around the hole (76 × 34 × 37 cells), and a rectangular "axis patch"
(17 × 34 × 17 cells). The near-wall pitch was taken to be equal to 8.3⋅10−5.

Analysis of Results. Some of the results of calculations carried out on the three above-mentioned grids are
presented in Figs. 3–8 and in Tables 1 and 2.

TABLE 1. Effect of the Scheme and Geometric Factors on the Experimental Values of the Local Parameters of a Flow around
a Plane Wall with a Spherical Hole and the Characteristics of Turbulence, and the Integral Force and Thermal Characteristics
of the Flow at Re = 104

Parameters ∆ = 0.06, h = 10−4 ∆ = 0.0625, h = 5⋅10−4 ∆ = 0.062, h = 8.3⋅10−5 ∆ = 0.22, h = 5⋅10−4

pmax 0.0689 0.0714 0.0768 0.1116
pmin –0.0981 –0.1054 –0.0935 –0.1246
umax 1.031 1.031 1.034 1.027
umin –0.0295 –0.0509 –0.0438 –0.2133
vmax 0.1226 0.1258 0.1251 0.2672
vmin –0.0702 –0.07026 –0.0741 –0.113
wmax 0.086 0.1403 0.1347 0.2112
wmin –0.1315 –0.1403 –0.1347 –0.143
kmax 0.01004 0.0113 0.01089 0.04454

νt,max 0.00101 0.00097 0.00099 0.002877

Cxftr 0.003478 0.00300 0.00312 0.001164
Cxptr 0.001123 0.00194 0.00189 0.01242
Cxtr 0.004603 0.00494 0.00501 0.01359

Nutr ⁄ Nupl,tr 0.975 0.977 0.975 1.12

Cxfc 0.004084 0.003913 0.004001 0.004004

Nuc ⁄ Nupl,c 1.012 0.995 1.014 1.177

TABLE 2. Dependence of the Local, Extremum, and Integral Characteristics of the Flow and the Heat Exchange in the
Neighborhood of a Trench and a Hole on Their Depth (Diagrams of the elements around which the stream flows are presented
in fig. 5)

Parameters
Depth

0.0625 0.22
trench hole trench hole

pmax 0.0817 0.0714 0.0815 0.1116
pmin –0.08615 –0.1054 –0.0826 –0.1246
umax 1.028 1.031 1.025 1.027
umin –0.0619 –0.0509 –0.2165 –0.2133
vmax 0.1168 0.1258 0.1985 0.2672
vmin –0.0549 –0.07026 –0.0974 –0.113
wmax — 0.1403 — 0.2112
wmin — –0.1403 — –0.143
kmax 0.0135 0.0113 0.0333 0.04454

νt,max 0.00133 0.00097 0.00217 0.00288

Cxftr 0.00183 0.00300 –0.00043 0.00116
Cxptr 0.00417 0.00194 0.0148 0.01242
Cxtr 0.00600 0.00494 0.0144 0.01359

Nutr ⁄ Nupl,tr 1.007 0.977 1.19 1.12

Cxfc 0.00382 0.00391 0.0038 0.00400

Nuc ⁄ Nupl,c 1.052 0.995 1.25 1.177
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The methodical calculations of turbulent flows around shallow holes close in depth and the convective heat
exchange in their neighborhood have shown that the topology of multiblock grids has an insignificant influence on the
results of numerical simulation. It is significant that the data obtained with the use of simplified grids, e.g., Cartesian
grids (see Fig. 2a and c) that take no account of the shape of the smoothed edges of spherical holes, correlate fairly
well with analogous data obtained with cylindrical grids consistent with the hole surface around which the stream
flows (Fig. 2e). Moreover, the results of numerical simulation remained practically unchanged when the near-wall pitch

Fig. 3. Comparison of the patterns of flows around shallow holes of close
depth on a plane wall [a, d) ∆ = 0.06; b, e) 0.0625; c, f) 0.062], fields of sur-
face isobars drawn with a step of 0.02 from the zero level (a, b, c), and fields
of surface isolines of relative heat transfer Nu/Nupl drawn with a step of 0.025
from the unit level (d, e, f). The dashed line denotes the edges of the hole.

Fig. 4. Comparative analysis of the surface distributions of excess pressure (a,
d), friction stress (b, e), and relative heat transfer (c, f) in the longitudinal [a,
b, c) z = 0] and transverse [d, e, f) x = 0] middle cross sections of the hole:
1) ∆ = 0.06; 2) 0.0625; 3) 0.062.
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h changed in the range considered from 10−4 to 5⋅10−4, which indicates that calculations can be performed with a
coarse pitch near the wall.

As was noted in [8], a flow around a spherical hole occupies surrounding near-wall layers, i.e., the lines of
flow are bent on its side slopes. Such behavior of the flow is explained by the fact that the excess pressure decreases
upstream of the concavity, which also leads to an acceleration of the flow. This is especially true for a flow without
separation around a shallow hole.

Fig. 5. Diagrams of the concavity (tr) and the wake zone (wake) on the sur-
face around which the stream flows in the three-dimensional (a, b) and two-di-
mensional (c) cases.

Fig. 6. Comparative analysis of the patterns of fluid spreading on the surface
of a shallow hole [∆ = 0.0625 (a, c) and a deep hole [∆ = 0.22 (b, d)] repre-
sented by isobars drawn with a step of 0.02 from the zero level of the excess
pressure (a, b) and isolines of relative heat transfer Nu/Nupl (c, d) drawn with
a step of 0.025.
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The deceleration of the flow in a shallow hole (∆ is of the order of 0.06) leads to the formation of a thin
separation bubble as in the case of flow in a trench of the same depth [11], and the line of connection lies somewhat
higher than the concavity center (Fig. 6a). In fact, on the pattern of fluid spreading inside the hole, this line represents
a line of distributed sources, from which some fluid particles move to meet the incoming flow, and the behavior of
the oppositely directed trajectories of particles, covering the windward slope, is analogous to the behavior of a jet
flowing from a nozzle. As a result, within the hole there arises a fairly compact three-dimensional region of return-cir-
culatory fluid motion with a circumferential separation line lying on the leeward slope somewhat lower than the lead-
ing edge of the hole.

The dome-like distribution of the static pressure points to a fairly high excess pressure, whose maximum is
shifted below the center of the hole to the windward side. It should be noted that the pressure decreases fairly rapidly
outside the side edges of the hole (Fig. 4d) and, beyond its areal, whose diameter can be equal to the four diameters
of the hole, the excess pressure is close to zero.

The fluid flowing from the concavity to the plane makes a sharp turn, which leads to a peak pressure drop.
The rarefaction zone, i.e., the zone where the excess pressure is low, has dimensions (in both the longitudinal and
transverse directions) of the order of one diameter. The zone where the flow is accelerated, with the result that the
friction stress increases sharply (by two times) (Fig. 4b), is fairly narrow and is limited to the neighborhood of the
concavity-edge rounding. It is interesting that the maximum rarefaction in the wake downstream of a hole is much
higher than that downstream of a trench. This is most probably due to the transverse reduction of the flow to the geo-
metric plane of symmetry, which is illustrated (Fig. 6a) by the turn of the streamlines downstream of the trailing edge
of the spherical hole. As a consequence, in the case of a three-dimensional flow, the relative heat transfer downstream
of the concavity decreases with a smaller rate (Fig. 7b).

It has been established in the present work, as also in earlier works [3, 4, 8], that in a flow around a deep
hole (∆ of the order of 0.2) there arise single-vortex structures (Fig. 6b and d) transporting the fluid in the transverse
direction with a maximum velocity of the order of 0.2. It should be noted that the predicted pattern of the flow cor-
relates well with experimental data (see, e.g., [20]). It is evident that the space topology of a turbulent flow around a
deep spherical hole differs radically from that of a flow around a trench of the same depth on a plane, even through
the distributions of the static pressure in the middle cross section and the intensity of the reverse flow are practically
identical in the two-dimensional and three-dimensional cases (Table 2). However, a spherical hole turbulizes the flow
much more strongly. It was found that the maximum levels of turbulent energy and vortex viscosity for it are approxi-
mately 25% higher than those for a transverse trench. The reverse situation is observed for a shallow hole: the maxi-

Fig. 7. Graphs of longitudinal distribution of excess pressure (a, c) and local
relative heat transfer Nu/Nupl (b, d) in the middle cross section of the neigh-
borhood of a hole (1) and a trench (2, 3). The experimental data (3) were
taken from [19].
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mum turbulence characteristics of this hole are smaller by the same value than those in the two-dimensional case, i.e.,
the near-wall flow is turbulized with a delay.

It is seen from the data (Table 2) of numerical analysis of the intensification of heat exchange in a hole and
in the wake downstream of it, performed using the method of rectangular elements around which the stream flows [6,
8, 9, 21], that two-dimensional concavities offer advantages over the three-dimensional ones in relative heat transfer.
On the one hand, this is a consequence of the choice of a fairly long element in the wake (two characteristic linear
sizes), and on the other hand the width of the band downstream of the hole, taken to be equal to 1.5, seems to be
incorrect. This, of course, is not of critical importance when holes of different depth are compared; however, in the
case of concavities of different dimension, a different method of analysis should be used. Figure 8 shows the data on
the relative heat transfer averaged over a unit length of the band downstream of the hole. This allows one to deter-

Fig. 8. Comparative analysis of the relative heat transfer averaged over a unit-
length band in the transverse direction in the wake downstream of a concav-
ity: 1, 2) holes; 3, 4) trenches; 1, 3) ∆ = 0.0625; 2, 4) ∆ = 0.22. The edges
of the concavity are shown.

Fig. 9. Pattern of fluid spreading on the surface of a shallow hole (∆ = 0.083;
r = 0.1, δ = 0.05) represented by isobars drawn with a step of 0.01 (a) and
comparative analysis of the calculated and experimental distributions of the
static pressure in the transverse middle cross section of a hole (b): r = 0.1 and
δ = 0.05 (1), 0.25 and 0.1 (2), 0.01 and 0.175 (3); 4) data obtained using the
potential theory; 5) experiment [20, 22].
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mine the functional dependence of Nu/Nupl on the band width z0 and compare it with the corresponding value of
Nu/Nupl for a unit-length element in the wake downstream of a trench. For a shallow spherical hole, only the relative
heat transfer in the middle cross section of the wake downstream of the hole approaches the heat transfer in the plane
case. At the same time, in a deep hole there is a zone of width comprising approximately 40% of the hole diameter,
in which the heat transfer is markedly higher (by 14% at the most) than that in the two-dimensional hole.

The distributions of the local characteristics in the longitudinal cross section inside a shallow concavity and
its integral characteristics were found to be practically identical to those in the plane and three-dimensional cases. De-
spite the significantly inhomogeneous distribution of the relative heat transfer in the hole (Fig. 4c and f), the total heat
transfer in it is equal to that of a plane wall. As for a deep hole, the transverse transport of the fluid in it substantially
weakens (by 7%) the intensification of the heat exchange (Table 2) as compared with that in a trench. However, the
heat transfer increases by 12% in this hole and by 18% in the near wake downstream of it.

Yet, one experiment on a flow around an isolated shallow hole of depth 0.083 is frequently described in the
literature [20, 22]. The distributions of the pressure measured in the longitudinal middle cross section of the hole are
compared with the estimates made on the basis of the potential theory. Since the conditions of the physical experiment
are not concretized and the shape of the hole, which is determined not only by its relative depth but also by the sur-
face curvature, including the radius of the rounding of the sharp-pointed edge, is not known, in our numerical experi-
ment we used several spherical holes close in configuration and different in the thickness of the boundary layer. A
comparative analysis of the data of calculations of flows around holes having different geometric, regime, and design
parameters is presented in Fig. 9 and in Table 3. The Reynolds number was taken to be equal to 4⋅104.

The comparatively small differences between the characteristics presented in Table 3 can be due to the differ-
ences between the initial parameters.

The conclusions made are somewhat paradoxical because the simplified shape of the hole used in the calcula-
tions on Cartesian grids just differs substantially from a sphere (especially at the rounded edges). This difference is ap-
parently responsible for the somewhat overstated (by 15%) profile drag of the hole calculated using Cartesian grids,
which allows us to recommend the inclusion of insets, describing the smoothed edges of holes, into multiblock grids.
At the same time, the surface-pressure distributions (Fig. 9b) in holes of different configurations are very close, espe-
cially in maximum pressure peak (independently of the boundary-layer thickness and the radius of the rounding). How-
ever, the minimum pressure, realized immediately downstream of the hole, depends substantially on r. At very small
r, the pressure drop pmin is significant. Analysis of the fluid-spreading patterns presented in Fig. 9a shows that a small

TABLE 3. Comparative Analysis of the Integral, Extremum, and Local Characteristics of a Flow around a Hole of Depth
0.083 for Different Geometric, Regime, and Scheme Parameters

Parameters

r = 0.1, δ = 0.05,
Cartesian two-block

grids D950,000 cells,
h = 5⋅10−4

r = 0.25, δ = 0.1,
Cylindrical Cartesian
grids D300,000 cells,

h = 5⋅10−4

r = 0.01, δ = 0.175,
Cylindrical Cartesian
grids D132,000 cells,

h = 5⋅10−4 

r = 0.1, δ = 0.05,
Cylindrical Cartesian
grids D600,000 cells,

h =10-4 

pmax 0.0766 0.0657 0.061 0.068
pmin –0.0111 –0.0696 –0.132 –0.098
umax 1.030 1.014 1.015 1.017
umin –0.102 –0.0927 –0.0893 –0.090
vmax 0.158 0.132 0.146 0.150
vmin –0.0482 –0.0445 –0.046 –0.0495
wmax 0.155 0.121 0.152 0.147
wmin –0.155 0.121 –0.152 –0.147
kmax 0.01916 0.01645 0.0149 0.0165

νt,max 0.000992 0.00144 0.00152 0.00146
Cxftr 0.002296 0.00221 0.00179 0.00219
Cxptr 0.00419 0.00317 0.00364 0.00361
Cxtr 0.00649 0.00538 0.00543 0.00579
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increase in the depth of a shallow hole (from 0.0625 to 0.083) leads to a marked increase in the dimensions of the
separation zone (the point of connection of the flow is brought to the windward side of the hole); however, the type
of hole remains the same in this case, i.e., it continues to be a separation bubble.

Comparison of the numerical-simulation data with predictions made on the basis of the potential theory and
the experimental data allows a number of interesting conclusions. The difference between the shapes of the pressure
diagrams has engaged our attention first of all. Curves 1–3 with peaks shifted to the windward side differ radically
from the canonical pressure distribution (curve 4) characteristic of potential flows. It is somewhat strange that the ex-
perimental data of [20, 22] correspond to the latter, but, even so, they partially correspond (in extremum values) to the
calculation data. This is most probably due to the use of the potential theory, the applicability of which to a near-wall
viscous-fluid flow of the type of a boundary layer seems to be controversial. The quantitative disagreement between
the indicated data supports this conclusion. At the same time, the satisfactory agreement between the results of numeri-
cal and physical experiments is evidence of the acceptability of the multiblock computational method and the Menter’s
model of shear-stress transfer selected.

In conclusion, we present data on the efficiency of the VP2/3 multiblock computational complex as applied to
the calculation of test variants of flows around a spherical hole on a plane wall. A separation flow around a hole of
depth 0.1 (r = 0.25) at Re = 104 and at an initial boundary-layer thickness of 0.175 has been numerically simulated
on a set of four different-scale grids (three Cartesian grids and one cylindrical grid) with a total number of cells of
D135,000. The calculations were performed on a Pentium IV computer with a processor of speed 1.7 GHz and took
94.5 min, which is entirely acceptable for conducting serial parametric calculations.

Thus, the multiblock algorithm realized in the special VP2/3 package has been verified and the Menter’s
model of shear-stress transfer has been tested on the basis of comparison of the calculation data with the available ex-
perimental data on the pressure distribution in the middle cross section of shallow and deep spherical holes. Compari-
son of a spherical hole and a trench, as elements of the vortex intensification of heat exchange, shows that the heat
transfer in a three-dimensional concavity of depth 0.22 is one-and-a-half times higher than the heat transfer from a
plane wall and 10% higher than the heat transfer from a unit zone in the wake downstream of a trench. However, the
region of the hole where the heat transfer exceeds the heat transfer in the trench is very narrow (of the order of 0.4).

This work was carried out with financial support from the Russian Basic Research Foundation (project Nos.
TO2P-015, 02-02-17562, 04-02-81005, 02-01-01160, 05-02-16184, and 05-01-00162).

NOTATION

Cxp and Cxf, coefficients of profile and friction resistance; cp, heat capacity at a constant pressure, kJ/(kg⋅K);
d, diameter of the hole, m; f, friction stress related to the doubled kinetic head in fractions of ρU2; h, near-wall pitch
in fractions of d; k, energy of turbulent pulsations in fractions of U2; n, coordinate measured along the normal to the
profile in fractions of d; Nu, Nusselt number determined as dθ ⁄ dn; OTL, kinematic-viscosity coefficient; p, pressure
related to the doubled kinetic head in fractions of ρU2; Pr, Prandtl number, Pr = cpµ ⁄ λ; r, radius of the rounding of
the sharp-pointed edge in fractions of d; Re, Reynolds number, Re = ρUD ⁄ µ; T, temperature, K: U, velocity of a uni-
form flow, m/sec; u, v, and w, longitudinal, vertical, and transverse components of the velocity vector in fractions of
U; x, y, z, Cartesian coordinates, m; δ, initial thickness of the boundary layer in fractions of d; ∆, depth of the con-
cavity in fractions of d; ε, rate of turbulent-energy dissipation in fractions of U3 ⁄ d; λ, heat-conductivity coefficient,
W/(m⋅K); µ, viscosity, Pa⋅sec; ν, kinematic viscosity, µ ⁄ ρ; θ, dimensionless temperature; θ = (T − Tw)/(Tinlet − Tw); ρ,
density, kg/m3; ω, specific rate of turbulent energy dissipation in fractions of U/d. Subscripts: inlet, parameters at the
inlet to the computational region; min and max, minimum and maximum values; pl, parameters on a plane without a
hole; t, turbulent; tr, concavity zone (trench zone); wake, wake region; w, parameters on a wall; 0, transverse size of
the unit-length zone downstream of the hole.
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